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1. Introduction 

The transit network design problem (TNDP) dates back over five decades, receiving increasing 

attention over the past two.  Simply put, the TNDP seeks to do two things: 1) Select groups of 

transit stops that should form routes and 2) Establish a sequence in which those stops should be 

visited.  Because the underlying optimization problems are combinatorial in nature and fall into 

the class of NP-Hard problems, approximation algorithms are used in any realistically-sized 

network.  Previous attempts to solve the TNDP have taken path-based approaches; working from 

an initial route set and perturbing, extending or shortening routes in that initial set.  This 

approach remains the standard today, though it’s concepts originated in an era where 

computational power was limited and prohibitively expensive.  

A modified Genetic Algorithm (GA) will be employed, which will allow variants on 

traditional cost minimization, such as equity maximization.  This report contains a detailed 

discussion and validation of the genetic algorithm (GA) used to solve equitable Traveling 

Salesman Problem (EqTSP). First, each step of the GA will be discussed, focusing on the 

procedures and algorithmic structures which are unique to this specific algorithm. Then 

experimental evidence will be provided to validate decisions regarding its algorithmic structure, 

including the decision to clone winning solutions into the next generation and the use of rogue 

parents. Finally, a sensitive analysis is conducted on the five input parameters: population size, 

tournament size, number of rogue parents, mutation rate, and convergence criteria. All of the 

preliminary experiments and sensitive analysis were conducted on the Sioux Falls network. Once 

the best algorithmic structure and input parameters were determined, the GA was tested on the 

Qatar national network.  



 

 

 

 

 

 

2. Overview of the GA 

This section will describe the GA in technical terms and focus on the components which make it 

unique. Most of the decisions made in the GA can be explained in terms of either intensification 

or diversification. The purpose of a GA is to drive closer and closer to the optimal solution with 

each generation, a process known as intensification (Blum and Roli 2003) However, the 

population of solutions must maintain enough diversity to overcome local minima and find the 

true optimal solution. Maintaining diversity means that some individual solutions may move 

further from the optimal solution even as the best solutions continue to improve. 

The pseudocode for the primary routine is shown below. 

 

 

 
  
   
  
   
   
  
  
   
  
   
    
    
   
     
    
   
    
    
   
     
     
    
    



     
     
     
        
     
      
        
   
   
     
   
     
    
  

 

 

  
  

  
  

 
  
   
   
   

   
   
   

 

2.1 Generating Initial Solutions  

Generating good initial solutions is necessary for the algorithm to converge on optimal or near-

optimal solutions. Given the size of the solution space for this problem, it is possible to generate 

an initial population that contains both diverse and good solutions. The solution space contains 

 

 

 



  

all possible permutations of the nodes within a network. The size of the solutions space can 

therefore be calculated as shown below: 

 

 

 

 

 

Consider the Sioux Falls network which contains only 24 nodes. Even though it is a relatively 

small network, it contains 6.2045*1023 possible solutions. This is why it is important to start with 

a reasonably good population. 

The pseudocode below was used to generate initial solutions. 

  

 

 

 
     
  

 
  

 
   
  
   

   
   
   
   
  
  
  

 
 



 

 

  

 

 

  

 

 

  

 

 

 

 

The α parameter allows the user to adjust the importance of the nearness of nodes in generating 

initial solutions. A higher α value places greater emphasis on the nearness of nodes. For the 

Sioux Falls experiments, α was set equal to 1. For larger networks, it is necessary to increase α. 

For larger networks, it was helpful to apply a second strategy of not allowing initial solutions 

which exceeded a certain threshold. The TSP solution cannot exceed twice the cost of the 

minimum spanning tree (MST). The cost of the MST can be found a priori using Kruskal’s 

algorithm (Kruskal 1956). Solutions that do not meet this threshold are not added to the initial 

population. 

2.2 Tournament  

The tournament determines which solutions will be allowed to enter the reproductive phase of 

the GA and which will be discarded. The population is split into smaller groups of size t and the 

best solution from each group is then added to the reproductive pool. While it may seem most 

sensible to simply rank the solutions and the pick the top solutions for inclusion in the 

reproductive pool, most GAs implement an indirect process, such as tournament, in an effort to 

maintain a diverse set of good solutions. Note that this process does guarantee the best solution, 

will be included in the reproductive pool. 

The pseudocode below was used to conduct the tournament. 

 

  

 

 
  
   
  



   
    
   
     
    
    
   
   
    
         
   
  
  

 
 

 

 

 

  

 

 

  

 

2.3 Reproduction  

The purpose of the reproduction phase is to create a new generation of solutions which drives the 

algorithm closer to the optimal solution while providing new diversity. This GA automatically 

clones a copy of the tournament winners into the next generation, a decision which will be 

further investigated later. The purpose of this step is to ensure that the population maintains a 

certain level of quality. Then several newly generated solutions, or rogues, are added to the 

reproductive pool. To the best of the author’s knowledge, this is a completely unique procedure. 

This is a method for adding diversity to the population and must be implemented in moderation. 

Its effectiveness will be discussed extensively. A crossover function then generates new 

solutions from the solutions in the reproductive pool. This function uses pieces from two good 

solutions and therefore, will hopefully create new good solutions which contribute to both the 

intensification and diversification processes. Finally, a mutation function is applied to small 



 

 

 

 

 

 

 

 

 

 

 

   

 

 
 

  
  
   

 

proportion of solutions. This function makes small, random changes to solutions, increasing 

diversity in the wider population. 

2.3.1 Crossover Function  

This GA used the EAX crossover proposed by Nagata and Kobayashi (1999). Because the 

solutions are represented as permutations rather than binary arrays, they require a special 

crossover function. The pseudocode for the crossover can be found in Nagata and Kobayashi 

(1999). 

2.3.2  Mutation Function  

The mutation function is only applied to a small proportion of the newly generated offspring 

solutions. This is because, like the addition of rogue parents, the mutation functions primary 

purpose is to diversify the population. Some of the mutations will help the algorithm overcome 

local minima and find better solutions, while others will worsen solutions. Initially, the intention 

of the authors was to replace the mutation function with the rogue parents. However, as will be 

shown in the following sections, both functions proved necessary to finding optimal solutions. 

This mutation function selects a small, random segment of the solution and reinserts it into 

another portion of the solution. This segment may or may not be reversed before reinsertion. The 

pseudocode below shows exactly how the mutation function operates. 

SUBROUTINE: Mutate route 

Notation in primary routine: MUTATE(r) 

Output: Route r with mutation 

begin 



 
 

    
   
     
   

   
 

 

 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

if then do 
begin 

reverse tempSeg 
end; 

insert tempSeg after insertPt 
end; 

2.4 Convergence  

At the end of each generation, the algorithm checks for convergence. This GA uses the number 

of generations without an improvement to the best solution as the convergence criteria. Ideally, 

the convergence criteria should balance quality of solutions with time to convergence. The 

convergence criteria should be set to a value at which it is unlikely the best solution will 

substantially improve if the algorithm were to continue running. A discussion of where this value 

should be set will included in the following sections. 

3. Description of Experiments   

An extensive set of experiments was conducted to validate and explore the two unique features 

of the GA: 

1. The automatic “cloning” of tournament winners into the next generation 

2. The addition of “rogue parents” (or newly generated solutions) into the reproductive 

pool. 

These experiments were conducted to determine the impact of these features on the quality of the 

solutions and the efficiency of the algorithm. The experiments were also used to determine the 

effects of the five GA parameters (population size, tournament size, rogue parents, mutation rate, 

and convergence criteria). 



 

 

  

 

 

  

 

 

 

  
  
  
   

 

 

 

 

 

 

  
  

  
  

  
 

 

In this analysis, four different algorithmic structures were tested, based on all possible 

combinations of two different decisions. The first decision was whether or not to clone parents 

into the next generation. The second decision was how to incorporate rogue parents into the 

algorithm. The first possibility is simply generating new solutions each iteration; however this 

may be time consuming, particularly for large networks. An alternative method which may save 

time is generating a small pool of rogue parents a priori which can be pulled from whenever 

rogue parents are necessary. Table 3.1 below outlines the 4 algorithm structures. Algorithm 1 is 

the algorithm described by the pseudocode in the previous section. 

Table 3.1 Algorithmic Structures for Experiments 

Algorithm 1 With clones; New rogue parents each generation 
Algorithm 2 With clones; Rogue parents from pool 
Algorithm 3 Without clones; New rogue parents each generation 
Algorithm 4 Without clones; Rouge parents from pool 

The algorithmic structures were tested on the travelling salesman problem (TSP) for Sioux Falls 

using all possible combinations of the parameters shown in Table 3.2. For each of the 4 

algorithmic structures and 120 parameter combinations, the GA was run 30 times. The solutions 

found using the GAs were compared to the known optimal solution to the problem which was 

found using a branch and bound method in GAMs. 

Table 3.2 Parameters for Experiments 

Population Size 100, 300 
Tournament Size (as a proportion of population) 0.05,0.10 
Rogue Parents (as a proportion of population) 0, 0.03, 0.05, 0.1, 0.2 
Mutation Rate 0, 0.01, 0.10 
Convergence Criteria (Number of generations without improvement) 10,40 

4. Discussion of Results 



  

 

 

 

 

 

 

Each of the algorithmic structures and parameters will be evaluated with regards to both the 

quality of solutions and the time to convergence. Finding quality solutions is prioritized over 

finding solutions quickly, however time to convergence cannot become so high that the GA 

becomes unusable.  

4.1 Results of Algorithmic Structure Testing  

Algorithm 1, which clones parents into the next generation and generates new rogue parents each 

iteration, converged on the known optimal solution significantly more frequently than the other 

algorithmic structures. Figures 3.1 (a-d) plots the time to convergence versus the proportion of 

runs converging on the optimal solution for each of the experiments run on the different 

algorithmic structures. Please note, some outliers took more than 100 seconds to converge and 

are not shown in these figures. 

Figure 3.1 (a) Algorithm 1: Clones, New Rogue Parents  



 

 

 

 

Figure 3.1 (b) Algorithm 2: Clones, Rogue Parents from Pool 

Figure 3.1(c) Algorithm 3: No Clones, New Rogue Parents 



 
 

 
Figure 3.2 below compares the distribution of results for the different algorithmic structures  

using box plots.  

 

Figure 3.1(d) Algorithm 4: No clones, Rogue parents from pool 

Figure 3.2 Comparisons of Algorithmic Structures by Quality of Solutions  



  

 

 

 

 

 

 

 

  

 

 

 

 

 

Figures 3.1(a-d) and Figure 3.2 show that algorithms 3 and 4, those which did not clone 

tournament winners into the next generation were unable to converge on the optimal solution 

even 50% of the time. These algorithmic structures were immediately discarded. The differences 

in the quality of algorithmic structures 1 and 2 were less obvious. A t-test comparing algorithms 

1 and 2 showed that algorithm 1 converged on the optimal solution significantly more often than 

algorithm 2 (p< 0.001). There was no statistically significant difference in time to convergence 

between algorithms 1 and 2. 

To summarize, cloning the tournament winners into the next generation significantly increased 

the proportion of runs converging on the known optimal solution. Generating new rogue parents 

each generation also significantly increased the proportion of runs converging on the known 

optimal solution as compared to pulling clone parents from a pre-generated pool. There was not a 

significant difference in the time to convergence between the two treatments of rogue parents. 

Given these results, algorithm 1 will be used for all future testing. 

4.2 Results of Parameter Testing  

Calibrating the parameters to their actual optimal values would require the development of a 

secondary heuristic; a line of research which is outside the scope of this project. However, the 

experiments conducted on the selected set of parameters for algorithm 1 provides insights on the 

effects of parameter values. While each of the five parameters was tested for their impact on the 

quality and time to convergence, this analysis will focus on the rogue parent and mutation rate 

parameters. Before going into a detailed discussion of these parameters, this section will provide 

a brief summary of the others. 

The smaller population size (100) converged on the optimal solution significantly more often 

(p<0.001) in significantly less time (p=0.04). The smaller tournament size (0.05) converged on 



 

 

  

 

     

  

 
 

 
       
       
       
       
       
       
       
       
       
       
       
       
       

 

 

the optimal solution significantly more often (p<0.001) and had no significant influence on time. 

The higher convergence criteria (40 generations without improvement) converged on the optimal 

solution significantly more often (p<0.001) but required significantly more time (p=0.04). 

However, it is worth noting that while the GAs with a 40 generation convergence criteria did 

require significantly more time to converge, that does not mean the time was necessarily 

unreasonable. Table 3.3 below shows the combinations of parameters in which more than 90% of 

the runs converged on the optimal solution. (A table showing the full set of parameter 

combinations can be found in Appendix A.) For example, the parameter combination shown in 

the first row has a convergence criterion of 40 generations and returns the optimal solution in 

100% of runs, yet each run only takes 19.33 seconds on average. 

Table 3.3 Results for Best Parameter Combinations (Sioux Falls) 

Runs Avg Time to 
Pop Mutation Converging on Convergence 
Size Tournament Rogues Rate Gen Optimal [%] [s] 
100 0.05 0.05 0.10 40 100.00 19.33 
100 0.05 0.10 0.01 40 96.67 20.67 
100 0.05 0.10 0.00 40 93.33 18.47 
300 0.05 0.03 0.01 10 93.33 19.73 
100 0.05 0.00 0.10 40 93.33 45.98 
300 0.05 0.03 0.10 40 93.33 58.81 
100 0.05 0.05 0.00 40 90.00 19.06 
100 0.05 0.05 0.01 40 90.00 21.07 
100 0.05 0.03 0.10 40 90.00 22.67 
100 0.05 0.20 0.10 40 90.00 24.98 
300 0.05 0.00 0.01 10 90.00 35.88 
100 0.05 0.00 0.01 40 90.00 43.20 
300 0.05 0.03 0.01 40 90.00 56.37 

Unlike the other parameters, both the rogue parent and mutation rate parameter had the option of 

being set to 0. This means that in some experiments no rogue parents were added and/or the 



 

 

 
       

         
        
         
          
           

 

 

 

 

 

mutation function was never applied. The five possible values for the rogue parent parameter 

were compared to each other using a t test. The results are shown in Table 3.4 below. 

Table 3.4: Comparison of Rogue Parent Parameters: t-Test p values 

Value of Rogue Parent Parameter 
0.00 0.03 0.05 0.10 0.20 

0.00 
0.03 
0.05 
0.10 

0.0002 0.0008 
0.1179 

0.0037 
0.1410 
0.8826 

0.2676 
0.0001 
0.0005 
0.0236Va
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0.20 

GAs with rogue parent parameters set at 0.03, 0.05, or 0.10 converged on the optimal solution 

significantly more frequently than those set at 0 (no rogue parents) or 0.20. The interpretation of 

these results can be further colored by the boxplots of shown in Figure 3.3. 

Figure 3.3 Comparison of Rogue Parent Parameter by Quality of Solution 

Figure 3.3 shows that the distribution of the proportion of runs converging on optimal is much 

larger when rogue parents are not included. This suggests that not including the rogues made the 

GA much more sensitive to the parameters. Even when the rogue parent parameter was set to 



 

 

 

 

 

 

 

 

 

 

0.2, which led to the GA converging on the optimal solution significantly less than the other 

parameters, the lower bound of the distribution is noticeably higher than when rogue parents are 

not included at all. 

Additionally, GAs with rogue parent parameters of 0.05 or 0.10 converged significantly faster 

than those set at other values. These tests suggest that the introduction of rogue parents into the 

population is a useful way to improve both the quality and efficiency of the GA for small 

network TSPs. 

The GAs with mutation rates of 0.10 converged on the known optimal solution significantly 

more often than those with mutation rates of 0.01 and 0. The distribution of the results can be 

seen in figure 3.4 below. 

Figure 3.4 Comparison of Mutation Rate  

This was a surprising result. The insertion of the rogue parents into the reproductive pool was 

initially intended to replace the mutation function. Not only do these results suggest it is 

necessary to keep the mutation function but the results also suggestion maintaining a particularly 



  

 

  

 

 

 

 

 

    

  

 
 

  

 
 

 
 

       
       
       
       
       
       
       
       
       
       
       
       
       
       

 

high mutation rate. This may be due to the limited parameter values tested in this analysis but it 

is still unusual. The high mutation rate did lead to significantly higher time to convergence. 

4.3 Larger Networks  

After running this extensive set of experiments on the Sioux Falls network, a smaller set of 

experiments was conducted on the much larger Qatar national network (National TSPs, 2009).  

The Qatar national network is a fully connected network containing 194 nodes. Because the 

network was much larger, the GA took longer to converge, especially for poor parameter 

combinations. For this reason, the set of experiments on the Qatar TSP does not contain the 

complete set of parameter combinations. Table 3.5 below shows the results of some of these 

experiments. All of the experiments have a tournament size of 0.05. Due to space constraints, 

this parameter is not shown in Table 3.5. 

Table 3.5:  Results for Best Parameter Combinations (Qatar National) 

Runs Runs 
within 1% within 5% Avg Time to 

Pop Mutation of Optimal of Optimal Convergence 
Size Rogues Rate Gen [%] [%] [s] 
300 0.03 0.10 80 0.27 1.00 670.82 
300 0.10 0.10 80 0.27 1.00 918.55 
300 0.05 0.00 40 0.23 0.97 465.82 
100 0.05 0.00 80 0.20 1.00 215.96 
300 0.05 0.01 80 0.17 1.00 758.32 
300 0.05 0.01 40 0.13 1.00 472.89 
300 0.10 0.10 40 0.13 1.00 666.53 
100 0.05 0.00 40 0.10 1.00 128.30 
100 0.10 0.10 40 0.10 1.00 201.70 
100 0.10 0.01 80 0.10 1.00 274.56 
100 0.10 0.10 80 0.10 0.93 290.14 
300 0.03 0.10 40 0.10 1.00 445.82 
300 0.05 0.00 80 0.10 1.00 729.16 
300 0.10 0.01 80 0.10 1.00 879.88 



  

 

 

 

 

   

 

 

 

 

  

 

The Qatar experiments found a similar relationship between parameters and solution quality as 

the Sioux Falls experiments. The one exception is that GAs using the larger population 

parameter (300) were found to converge within 1% of optimal significantly more often. This 

change aligns with previous research that larger problems benefit from larger initial populations. 

Though the GA takes longer to converge, it is capable of converging on near-optimal solutions 

for Qatar national TSP. 

5. Conclusions   

The GA presented contained two unique features: cloning tournament winners into the next 

generation and the use of rogue parents. Cloning tournament winners was shown to significantly 

increase the number of runs converging on the optimal solution. The inclusion of rogue parents 

was also shown to significantly increase the number of runs converging on the optimal solution. 

However, including too many rogue parents can decrease the quality of the solutions. The 

recommended number of rogue parents to insert into the reproductive pool is between 0.05 and 

0.10 of the population. These parameter values also caused the GA to converge significantly 

faster than the other rogue parent values. 

This GA was tested on both the small Sioux Falls TSP and the larger Qatar National TSP. For 

the right combination of parameters, the GA was able to find the optimal solution for the Sioux 

Falls TSP in 30 out of 30 runs. While the GA was not able to find the exact optimal solution for 

the Qatar National TSP, it was able to find solutions within 1% of optimal for 8 out of 30 runs 

and 5% of optimal for 30 out of 30 runs for some parameter combinations. The best solution 

found by the GA on the Qatar national network was within 0.08% of optimal. As these models 

are applied to larger networks, it would be worthwhile to parallelize this algorithm. GAs are easy 



 

 

to parallelize, as there are many independently functioning pieces. Parallelizing this algorithm 

could drastically improve computational time. 
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Appendix A: Full Set of Parameter Experiments on Sioux Falls TSP 
Runs Avg Time to 

Pop Mutation Converging on Convergence 
Size Tournament Rogues Rate Gen Optimal [%] [s] 
100 0.05 0.05 0.10 40 100.00 19.33 
100 0.05 0.10 0.01 40 96.67 20.67 
100 0.05 0.10 0.00 40 93.33 18.47 
300 0.05 0.03 0.01 10 93.33 19.73 
100 0.05 0.00 0.10 40 93.33 45.98 
300 0.05 0.03 0.10 40 93.33 58.81 
100 0.05 0.05 0.00 40 90.00 19.06 
100 0.05 0.05 0.01 40 90.00 21.07 
100 0.05 0.03 0.10 40 90.00 22.67 
100 0.05 0.20 0.10 40 90.00 24.98 
300 0.05 0.00 0.01 10 90.00 35.88 
100 0.05 0.00 0.01 40 90.00 43.20 
300 0.05 0.03 0.01 40 90.00 56.37 
100 0.05 0.05 0 10 86.67 6.68 
300 0.05 0.1 0.1 10 86.67 19.72 
100 0.05 0.1 0.1 40 86.67 20.74 
300 0.05 0.03 0.1 10 86.67 21.09 
300 0.05 0.1 0.1 40 86.67 52.60 
300 0.05 0.05 0.01 40 86.67 54.51 
100 0.05 0.1 0.1 10 83.33 7.16 
100 0.05 0.03 0.1 10 83.33 8.00 
100 0.05 0 0.01 10 83.33 9.38 
300 0.05 0.03 0 10 83.33 20.05 
100 0.05 0.03 0 40 83.33 23.75 
100 0.05 0.03 0.01 40 83.33 23.75 
300 0.05 0.05 0.1 40 83.33 52.44 
300 0.05 0.03 0 40 83.33 60.11 
300 0.05 0 0.01 40 83.33 444.36 
100 0.05 0.03 0 10 80.00 7.15 
100 0.05 0.2 0.01 40 80.00 18.62 
100 0.05 0.2 0 40 80.00 18.78 
100 0.05 0.05 0.01 10 76.67 6.77 
100 0.05 0.1 0.01 10 76.67 7.36 
100 0.05 0.05 0.1 10 76.67 7.51 
300 0.05 0.1 0.01 10 76.67 18.80 
300 0.05 0.05 0.01 10 76.67 19.68 
300 0.05 0.05 0 10 76.67 21.78 
100 0.05 0 0 40 76.67 42.63 
300 0.05 0.1 0 40 76.67 52.69 



       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

300 0.05 0.2 0 40 76.67 60.68 
300 0.05 0.05 0 40 76.67 63.33 
300 0.05 0 0 40 76.67 148.45 
100 0.1 0.1 0 10 73.33 7.75 
100 0.05 0.2 0.1 10 73.33 9.70 
100 0.05 0 0.1 10 73.33 14.98 
300 0.05 0.05 0.1 10 73.33 21.04 
100 0.1 0.1 0.1 40 73.33 21.24 
300 0.05 0.2 0 10 73.33 21.66 
100 0.1 0.05 0.1 40 73.33 25.54 
100 0.1 0.2 0.1 40 73.33 30.51 
300 0.05 0.2 0.01 40 73.33 68.69 
300 0.05 0.2 0.1 40 73.33 71.58 
300 0.05 0 0.1 40 73.33 762.52 
100 0.05 0.03 0.01 10 70.00 7.65 
100 0.05 0 0 10 70.00 10.01 
100 0.1 0.05 0 40 70.00 23.14 
300 0.05 0.2 0.1 10 70.00 31.08 
300 0.05 0.1 0.01 40 70.00 52.95 
100 0.05 0.1 0 10 66.67 7.67 
100 0.1 0.1 0.01 10 66.67 7.84 
100 0.05 0.2 0 10 66.67 8.11 
300 0.05 0.1 0 10 66.67 21.25 
100 0.1 0.03 0.1 40 66.67 28.60 
300 0.1 0.05 0.1 40 66.67 57.63 
300 0.1 0.03 0.01 40 66.67 58.29 
300 0.05 0 0.1 10 66.67 59.76 
100 0.1 0 0.1 40 66.67 354.50 
100 0.05 0.2 0.01 10 63.33 8.51 
100 0.1 0.1 0.1 10 63.33 8.95 
100 0.1 0.03 0.1 10 63.33 10.48 
300 0.1 0.03 0.01 10 63.33 21.65 
300 0.05 0 0 10 63.33 35.19 
300 0.1 0.03 0 40 63.33 56.21 
300 0.1 0.2 0 40 63.33 65.66 
100 0.1 0 0.01 40 63.33 114.02 
300 0.1 0.1 0 10 60.00 21.01 
100 0.1 0.2 0 40 60.00 22.45 
100 0.1 0.2 0.01 40 60.00 23.62 
100 0.1 0.03 0 40 60.00 25.32 
100 0.1 0.05 0.01 10 56.67 8.41 
300 0.1 0.05 0.1 10 56.67 19.96 
300 0.1 0.03 0.1 10 56.67 20.20 



       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

300 0.1 0.05 0 10 56.67 20.27 
300 0.1 0.03 0 10 56.67 20.81 
300 0.1 0.1 0.01 10 56.67 21.33 
300 0.1 0.1 0.1 10 56.67 23.81 
100 0.1 0.03 0.01 40 56.67 26.65 
300 0.1 0.03 0.1 40 56.67 58.23 
100 0.1 0.03 0 10 53.33 8.17 
100 0.1 0.03 0.01 10 53.33 8.41 
100 0.1 0.2 0.01 10 53.33 9.63 
100 0.1 0.1 0.01 40 53.33 20.78 
100 0.1 0.05 0.01 40 53.33 23.08 
300 0.05 0.2 0.01 10 53.33 27.06 
300 0.1 0.05 0 40 53.33 53.93 
300 0.1 0.2 0.1 40 53.33 73.48 
300 0.1 0.05 0.01 10 50.00 19.89 
100 0.1 0.1 0 40 50.00 20.30 
100 0.1 0 0.1 10 50.00 20.91 
100 0.1 0 0.01 10 50.00 83.32 
100 0.1 0.2 0.1 10 46.67 13.64 
300 0.1 0.1 0.01 40 46.67 57.12 
300 0.1 0.1 0.1 40 46.67 61.50 
100 0.1 0.05 0.1 10 43.33 8.39 
300 0.1 0.2 0.01 40 43.33 66.04 
100 0.1 0.05 0 10 40.00 7.88 
300 0.1 0.05 0.01 40 40.00 55.83 
100 0.1 0.2 0 10 36.67 8.93 
300 0.1 0.2 0.1 10 36.67 39.24 
100 0.1 0 0 40 36.67 58.27 
300 0.1 0 0.1 40 36.67 5512.16 
300 0.1 0.2 0.01 10 30.00 26.63 
300 0.1 0.1 0 40 30.00 57.56 
300 0.1 0.2 0 10 26.67 26.46 
300 0.1 0 0.01 40 26.67 3420.00 
300 0.1 0 0 10 23.33 62.70 
100 0.1 0 0 10 20.00 16.02 
300 0.1 0 0 40 20.00 200.86 
300 0.1 0 0.1 10 20.00 1534.67 
300 0.1 0 0.01 10 16.67 62.32 
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