

Project Title:

Clustering Algorithms for Transit Network
Design

Project Number: Project End Date: Submission Date:

UCNR25-35 May 31, 2018 August 27, 2018

Year 25 Final Repo rt
Grant Number: DTRT13-G-UTC31

New England University Transportation Center
77 Massachusetts Avenue, E40-279

Cambridge, MA 02139
utc.mit.edu

Principal
Investigator: Nicholas E. Lownes

Title: Associate Professor

University: University of Connecticut

Email: Nicholas.lownes@uconn.edu

Phone: (860)486-2717

Co-Principal
Investigator:

Title:

University:

Email:

Phone:

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information
presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation
Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or the use thereof.

The New England University Transportation Center is a consortium of 5 universities funded by the U.S. Department of Transportation,
University Transportation Centers Program. Members of the consortium are MIT, the University of Connecticut, the University of Maine,

the University of Massachusetts, and Harvard University. MIT is the lead university.

https://utc.mit.edu

1. Introduction

The transit network design problem (TNDP) dates back over five decades, receiving increasing

attention over the past two. Simply put, the TNDP seeks to do two things: 1) Select groups of

transit stops that should form routes and 2) Establish a sequence in which those stops should be

visited. Because the underlying optimization problems are combinatorial in nature and fall into

the class of NP-Hard problems, approximation algorithms are used in any realistically-sized

network. Previous attempts to solve the TNDP have taken path-based approaches; working from

an initial route set and perturbing, extending or shortening routes in that initial set. This

approach remains the standard today, though it’s concepts originated in an era where

computational power was limited and prohibitively expensive.

A modified Genetic Algorithm (GA) will be employed, which will allow variants on

traditional cost minimization, such as equity maximization. This report contains a detailed

discussion and validation of the genetic algorithm (GA) used to solve equitable Traveling

Salesman Problem (EqTSP). First, each step of the GA will be discussed, focusing on the

procedures and algorithmic structures which are unique to this specific algorithm. Then

experimental evidence will be provided to validate decisions regarding its algorithmic structure,

including the decision to clone winning solutions into the next generation and the use of rogue

parents. Finally, a sensitive analysis is conducted on the five input parameters: population size,

tournament size, number of rogue parents, mutation rate, and convergence criteria. All of the

preliminary experiments and sensitive analysis were conducted on the Sioux Falls network. Once

the best algorithmic structure and input parameters were determined, the GA was tested on the

Qatar national network.

2. Overview of the GA

This section will describe the GA in technical terms and focus on the components which make it

unique. Most of the decisions made in the GA can be explained in terms of either intensification

or diversification. The purpose of a GA is to drive closer and closer to the optimal solution with

each generation, a process known as intensification (Blum and Roli 2003) However, the

population of solutions must maintain enough diversity to overcome local minima and find the

true optimal solution. Maintaining diversity means that some individual solutions may move

further from the optimal solution even as the best solutions continue to improve.

The pseudocode for the primary routine is shown below.

2.1 Generating Initial Solutions

Generating good initial solutions is necessary for the algorithm to converge on optimal or near-

optimal solutions. Given the size of the solution space for this problem, it is possible to generate

an initial population that contains both diverse and good solutions. The solution space contains

all possible permutations of the nodes within a network. The size of the solutions space can

therefore be calculated as shown below:

Consider the Sioux Falls network which contains only 24 nodes. Even though it is a relatively

small network, it contains 6.2045*1023 possible solutions. This is why it is important to start with

a reasonably good population.

The pseudocode below was used to generate initial solutions.

The α parameter allows the user to adjust the importance of the nearness of nodes in generating

initial solutions. A higher α value places greater emphasis on the nearness of nodes. For the

Sioux Falls experiments, α was set equal to 1. For larger networks, it is necessary to increase α.

For larger networks, it was helpful to apply a second strategy of not allowing initial solutions

which exceeded a certain threshold. The TSP solution cannot exceed twice the cost of the

minimum spanning tree (MST). The cost of the MST can be found a priori using Kruskal’s

algorithm (Kruskal 1956). Solutions that do not meet this threshold are not added to the initial

population.

2.2 Tournament

The tournament determines which solutions will be allowed to enter the reproductive phase of

the GA and which will be discarded. The population is split into smaller groups of size t and the

best solution from each group is then added to the reproductive pool. While it may seem most

sensible to simply rank the solutions and the pick the top solutions for inclusion in the

reproductive pool, most GAs implement an indirect process, such as tournament, in an effort to

maintain a diverse set of good solutions. Note that this process does guarantee the best solution,

will be included in the reproductive pool.

The pseudocode below was used to conduct the tournament.

2.3 Reproduction

The purpose of the reproduction phase is to create a new generation of solutions which drives the

algorithm closer to the optimal solution while providing new diversity. This GA automatically

clones a copy of the tournament winners into the next generation, a decision which will be

further investigated later. The purpose of this step is to ensure that the population maintains a

certain level of quality. Then several newly generated solutions, or rogues, are added to the

reproductive pool. To the best of the author’s knowledge, this is a completely unique procedure.

This is a method for adding diversity to the population and must be implemented in moderation.

Its effectiveness will be discussed extensively. A crossover function then generates new

solutions from the solutions in the reproductive pool. This function uses pieces from two good

solutions and therefore, will hopefully create new good solutions which contribute to both the

intensification and diversification processes. Finally, a mutation function is applied to small

proportion of solutions. This function makes small, random changes to solutions, increasing

diversity in the wider population.

2.3.1 Crossover Function

This GA used the EAX crossover proposed by Nagata and Kobayashi (1999). Because the

solutions are represented as permutations rather than binary arrays, they require a special

crossover function. The pseudocode for the crossover can be found in Nagata and Kobayashi

(1999).

2.3.2 Mutation Function

The mutation function is only applied to a small proportion of the newly generated offspring

solutions. This is because, like the addition of rogue parents, the mutation functions primary

purpose is to diversify the population. Some of the mutations will help the algorithm overcome

local minima and find better solutions, while others will worsen solutions. Initially, the intention

of the authors was to replace the mutation function with the rogue parents. However, as will be

shown in the following sections, both functions proved necessary to finding optimal solutions.

This mutation function selects a small, random segment of the solution and reinserts it into

another portion of the solution. This segment may or may not be reversed before reinsertion. The

pseudocode below shows exactly how the mutation function operates.

SUBROUTINE: Mutate route

Notation in primary routine: MUTATE(r)

Output: Route r with mutation

begin

if then do
begin

reverse tempSeg
end;

insert tempSeg after insertPt
end;

2.4 Convergence

At the end of each generation, the algorithm checks for convergence. This GA uses the number

of generations without an improvement to the best solution as the convergence criteria. Ideally,

the convergence criteria should balance quality of solutions with time to convergence. The

convergence criteria should be set to a value at which it is unlikely the best solution will

substantially improve if the algorithm were to continue running. A discussion of where this value

should be set will included in the following sections.

3. Description of Experiments

An extensive set of experiments was conducted to validate and explore the two unique features

of the GA:

1. The automatic “cloning” of tournament winners into the next generation

2. The addition of “rogue parents” (or newly generated solutions) into the reproductive

pool.

These experiments were conducted to determine the impact of these features on the quality of the

solutions and the efficiency of the algorithm. The experiments were also used to determine the

effects of the five GA parameters (population size, tournament size, rogue parents, mutation rate,

and convergence criteria).

In this analysis, four different algorithmic structures were tested, based on all possible

combinations of two different decisions. The first decision was whether or not to clone parents

into the next generation. The second decision was how to incorporate rogue parents into the

algorithm. The first possibility is simply generating new solutions each iteration; however this

may be time consuming, particularly for large networks. An alternative method which may save

time is generating a small pool of rogue parents a priori which can be pulled from whenever

rogue parents are necessary. Table 3.1 below outlines the 4 algorithm structures. Algorithm 1 is

the algorithm described by the pseudocode in the previous section.

Table 3.1 Algorithmic Structures for Experiments

Algorithm 1 With clones; New rogue parents each generation
Algorithm 2 With clones; Rogue parents from pool
Algorithm 3 Without clones; New rogue parents each generation
Algorithm 4 Without clones; Rouge parents from pool

The algorithmic structures were tested on the travelling salesman problem (TSP) for Sioux Falls

using all possible combinations of the parameters shown in Table 3.2. For each of the 4

algorithmic structures and 120 parameter combinations, the GA was run 30 times. The solutions

found using the GAs were compared to the known optimal solution to the problem which was

found using a branch and bound method in GAMs.

Table 3.2 Parameters for Experiments

Population Size 100, 300
Tournament Size (as a proportion of population) 0.05,0.10
Rogue Parents (as a proportion of population) 0, 0.03, 0.05, 0.1, 0.2
Mutation Rate 0, 0.01, 0.10
Convergence Criteria (Number of generations without improvement) 10,40

4. Discussion of Results

Each of the algorithmic structures and parameters will be evaluated with regards to both the

quality of solutions and the time to convergence. Finding quality solutions is prioritized over

finding solutions quickly, however time to convergence cannot become so high that the GA

becomes unusable.

4.1 Results of Algorithmic Structure Testing

Algorithm 1, which clones parents into the next generation and generates new rogue parents each

iteration, converged on the known optimal solution significantly more frequently than the other

algorithmic structures. Figures 3.1 (a-d) plots the time to convergence versus the proportion of

runs converging on the optimal solution for each of the experiments run on the different

algorithmic structures. Please note, some outliers took more than 100 seconds to converge and

are not shown in these figures.

Figure 3.1 (a) Algorithm 1: Clones, New Rogue Parents

Figure 3.1 (b) Algorithm 2: Clones, Rogue Parents from Pool

Figure 3.1(c) Algorithm 3: No Clones, New Rogue Parents

Figure 3.2 below compares the distribution of results for the different algorithmic structures

using box plots.

Figure 3.1(d) Algorithm 4: No clones, Rogue parents from pool

Figure 3.2 Comparisons of Algorithmic Structures by Quality of Solutions

Figures 3.1(a-d) and Figure 3.2 show that algorithms 3 and 4, those which did not clone

tournament winners into the next generation were unable to converge on the optimal solution

even 50% of the time. These algorithmic structures were immediately discarded. The differences

in the quality of algorithmic structures 1 and 2 were less obvious. A t-test comparing algorithms

1 and 2 showed that algorithm 1 converged on the optimal solution significantly more often than

algorithm 2 (p< 0.001). There was no statistically significant difference in time to convergence

between algorithms 1 and 2.

To summarize, cloning the tournament winners into the next generation significantly increased

the proportion of runs converging on the known optimal solution. Generating new rogue parents

each generation also significantly increased the proportion of runs converging on the known

optimal solution as compared to pulling clone parents from a pre-generated pool. There was not a

significant difference in the time to convergence between the two treatments of rogue parents.

Given these results, algorithm 1 will be used for all future testing.

4.2 Results of Parameter Testing

Calibrating the parameters to their actual optimal values would require the development of a

secondary heuristic; a line of research which is outside the scope of this project. However, the

experiments conducted on the selected set of parameters for algorithm 1 provides insights on the

effects of parameter values. While each of the five parameters was tested for their impact on the

quality and time to convergence, this analysis will focus on the rogue parent and mutation rate

parameters. Before going into a detailed discussion of these parameters, this section will provide

a brief summary of the others.

The smaller population size (100) converged on the optimal solution significantly more often

(p<0.001) in significantly less time (p=0.04). The smaller tournament size (0.05) converged on

the optimal solution significantly more often (p<0.001) and had no significant influence on time.

The higher convergence criteria (40 generations without improvement) converged on the optimal

solution significantly more often (p<0.001) but required significantly more time (p=0.04).

However, it is worth noting that while the GAs with a 40 generation convergence criteria did

require significantly more time to converge, that does not mean the time was necessarily

unreasonable. Table 3.3 below shows the combinations of parameters in which more than 90% of

the runs converged on the optimal solution. (A table showing the full set of parameter

combinations can be found in Appendix A.) For example, the parameter combination shown in

the first row has a convergence criterion of 40 generations and returns the optimal solution in

100% of runs, yet each run only takes 19.33 seconds on average.

Table 3.3 Results for Best Parameter Combinations (Sioux Falls)

Runs Avg Time to
Pop Mutation Converging on Convergence
Size Tournament Rogues Rate Gen Optimal [%] [s]
100 0.05 0.05 0.10 40 100.00 19.33
100 0.05 0.10 0.01 40 96.67 20.67
100 0.05 0.10 0.00 40 93.33 18.47
300 0.05 0.03 0.01 10 93.33 19.73
100 0.05 0.00 0.10 40 93.33 45.98
300 0.05 0.03 0.10 40 93.33 58.81
100 0.05 0.05 0.00 40 90.00 19.06
100 0.05 0.05 0.01 40 90.00 21.07
100 0.05 0.03 0.10 40 90.00 22.67
100 0.05 0.20 0.10 40 90.00 24.98
300 0.05 0.00 0.01 10 90.00 35.88
100 0.05 0.00 0.01 40 90.00 43.20
300 0.05 0.03 0.01 40 90.00 56.37

Unlike the other parameters, both the rogue parent and mutation rate parameter had the option of

being set to 0. This means that in some experiments no rogue parents were added and/or the

mutation function was never applied. The five possible values for the rogue parent parameter

were compared to each other using a t test. The results are shown in Table 3.4 below.

Table 3.4: Comparison of Rogue Parent Parameters: t-Test p values

Value of Rogue Parent Parameter
0.00 0.03 0.05 0.10 0.20

0.00
0.03
0.05
0.10

0.0002 0.0008
0.1179

0.0037
0.1410
0.8826

0.2676
0.0001
0.0005
0.0236Va

lu
e

of

R
og

ue
 P

ar
en

t
Pa

ra
m

et
er

0.20

GAs with rogue parent parameters set at 0.03, 0.05, or 0.10 converged on the optimal solution

significantly more frequently than those set at 0 (no rogue parents) or 0.20. The interpretation of

these results can be further colored by the boxplots of shown in Figure 3.3.

Figure 3.3 Comparison of Rogue Parent Parameter by Quality of Solution

Figure 3.3 shows that the distribution of the proportion of runs converging on optimal is much

larger when rogue parents are not included. This suggests that not including the rogues made the

GA much more sensitive to the parameters. Even when the rogue parent parameter was set to

0.2, which led to the GA converging on the optimal solution significantly less than the other

parameters, the lower bound of the distribution is noticeably higher than when rogue parents are

not included at all.

Additionally, GAs with rogue parent parameters of 0.05 or 0.10 converged significantly faster

than those set at other values. These tests suggest that the introduction of rogue parents into the

population is a useful way to improve both the quality and efficiency of the GA for small

network TSPs.

The GAs with mutation rates of 0.10 converged on the known optimal solution significantly

more often than those with mutation rates of 0.01 and 0. The distribution of the results can be

seen in figure 3.4 below.

Figure 3.4 Comparison of Mutation Rate

This was a surprising result. The insertion of the rogue parents into the reproductive pool was

initially intended to replace the mutation function. Not only do these results suggest it is

necessary to keep the mutation function but the results also suggestion maintaining a particularly

high mutation rate. This may be due to the limited parameter values tested in this analysis but it

is still unusual. The high mutation rate did lead to significantly higher time to convergence.

4.3 Larger Networks

After running this extensive set of experiments on the Sioux Falls network, a smaller set of

experiments was conducted on the much larger Qatar national network (National TSPs, 2009).

The Qatar national network is a fully connected network containing 194 nodes. Because the

network was much larger, the GA took longer to converge, especially for poor parameter

combinations. For this reason, the set of experiments on the Qatar TSP does not contain the

complete set of parameter combinations. Table 3.5 below shows the results of some of these

experiments. All of the experiments have a tournament size of 0.05. Due to space constraints,

this parameter is not shown in Table 3.5.

Table 3.5: Results for Best Parameter Combinations (Qatar National)

Runs Runs
within 1% within 5% Avg Time to

Pop Mutation of Optimal of Optimal Convergence
Size Rogues Rate Gen [%] [%] [s]
300 0.03 0.10 80 0.27 1.00 670.82
300 0.10 0.10 80 0.27 1.00 918.55
300 0.05 0.00 40 0.23 0.97 465.82
100 0.05 0.00 80 0.20 1.00 215.96
300 0.05 0.01 80 0.17 1.00 758.32
300 0.05 0.01 40 0.13 1.00 472.89
300 0.10 0.10 40 0.13 1.00 666.53
100 0.05 0.00 40 0.10 1.00 128.30
100 0.10 0.10 40 0.10 1.00 201.70
100 0.10 0.01 80 0.10 1.00 274.56
100 0.10 0.10 80 0.10 0.93 290.14
300 0.03 0.10 40 0.10 1.00 445.82
300 0.05 0.00 80 0.10 1.00 729.16
300 0.10 0.01 80 0.10 1.00 879.88

The Qatar experiments found a similar relationship between parameters and solution quality as

the Sioux Falls experiments. The one exception is that GAs using the larger population

parameter (300) were found to converge within 1% of optimal significantly more often. This

change aligns with previous research that larger problems benefit from larger initial populations.

Though the GA takes longer to converge, it is capable of converging on near-optimal solutions

for Qatar national TSP.

5. Conclusions

The GA presented contained two unique features: cloning tournament winners into the next

generation and the use of rogue parents. Cloning tournament winners was shown to significantly

increase the number of runs converging on the optimal solution. The inclusion of rogue parents

was also shown to significantly increase the number of runs converging on the optimal solution.

However, including too many rogue parents can decrease the quality of the solutions. The

recommended number of rogue parents to insert into the reproductive pool is between 0.05 and

0.10 of the population. These parameter values also caused the GA to converge significantly

faster than the other rogue parent values.

This GA was tested on both the small Sioux Falls TSP and the larger Qatar National TSP. For

the right combination of parameters, the GA was able to find the optimal solution for the Sioux

Falls TSP in 30 out of 30 runs. While the GA was not able to find the exact optimal solution for

the Qatar National TSP, it was able to find solutions within 1% of optimal for 8 out of 30 runs

and 5% of optimal for 30 out of 30 runs for some parameter combinations. The best solution

found by the GA on the Qatar national network was within 0.08% of optimal. As these models

are applied to larger networks, it would be worthwhile to parallelize this algorithm. GAs are easy

to parallelize, as there are many independently functioning pieces. Parallelizing this algorithm

could drastically improve computational time.

6. References

Blum and Roli (2003) Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison. ACM Computing Surveys. 35(3): 268-308.

Kruskal, J. B. (1956) On the shortest spanning subtree of a graph and the travelling salesman
problem. Proceedings of the American Mathematical Society, Vol 7, pp 48-50.

Nagata, Yuichi and Kobayashi, Shigenobu (1999). Analysis of edge assembly crossover for the
travelling salesman problem. Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics v3: p III-628-III-633

Appendix A: Full Set of Parameter Experiments on Sioux Falls TSP
Runs Avg Time to

Pop Mutation Converging on Convergence
Size Tournament Rogues Rate Gen Optimal [%] [s]
100 0.05 0.05 0.10 40 100.00 19.33
100 0.05 0.10 0.01 40 96.67 20.67
100 0.05 0.10 0.00 40 93.33 18.47
300 0.05 0.03 0.01 10 93.33 19.73
100 0.05 0.00 0.10 40 93.33 45.98
300 0.05 0.03 0.10 40 93.33 58.81
100 0.05 0.05 0.00 40 90.00 19.06
100 0.05 0.05 0.01 40 90.00 21.07
100 0.05 0.03 0.10 40 90.00 22.67
100 0.05 0.20 0.10 40 90.00 24.98
300 0.05 0.00 0.01 10 90.00 35.88
100 0.05 0.00 0.01 40 90.00 43.20
300 0.05 0.03 0.01 40 90.00 56.37
100 0.05 0.05 0 10 86.67 6.68
300 0.05 0.1 0.1 10 86.67 19.72
100 0.05 0.1 0.1 40 86.67 20.74
300 0.05 0.03 0.1 10 86.67 21.09
300 0.05 0.1 0.1 40 86.67 52.60
300 0.05 0.05 0.01 40 86.67 54.51
100 0.05 0.1 0.1 10 83.33 7.16
100 0.05 0.03 0.1 10 83.33 8.00
100 0.05 0 0.01 10 83.33 9.38
300 0.05 0.03 0 10 83.33 20.05
100 0.05 0.03 0 40 83.33 23.75
100 0.05 0.03 0.01 40 83.33 23.75
300 0.05 0.05 0.1 40 83.33 52.44
300 0.05 0.03 0 40 83.33 60.11
300 0.05 0 0.01 40 83.33 444.36
100 0.05 0.03 0 10 80.00 7.15
100 0.05 0.2 0.01 40 80.00 18.62
100 0.05 0.2 0 40 80.00 18.78
100 0.05 0.05 0.01 10 76.67 6.77
100 0.05 0.1 0.01 10 76.67 7.36
100 0.05 0.05 0.1 10 76.67 7.51
300 0.05 0.1 0.01 10 76.67 18.80
300 0.05 0.05 0.01 10 76.67 19.68
300 0.05 0.05 0 10 76.67 21.78
100 0.05 0 0 40 76.67 42.63
300 0.05 0.1 0 40 76.67 52.69

300 0.05 0.2 0 40 76.67 60.68
300 0.05 0.05 0 40 76.67 63.33
300 0.05 0 0 40 76.67 148.45
100 0.1 0.1 0 10 73.33 7.75
100 0.05 0.2 0.1 10 73.33 9.70
100 0.05 0 0.1 10 73.33 14.98
300 0.05 0.05 0.1 10 73.33 21.04
100 0.1 0.1 0.1 40 73.33 21.24
300 0.05 0.2 0 10 73.33 21.66
100 0.1 0.05 0.1 40 73.33 25.54
100 0.1 0.2 0.1 40 73.33 30.51
300 0.05 0.2 0.01 40 73.33 68.69
300 0.05 0.2 0.1 40 73.33 71.58
300 0.05 0 0.1 40 73.33 762.52
100 0.05 0.03 0.01 10 70.00 7.65
100 0.05 0 0 10 70.00 10.01
100 0.1 0.05 0 40 70.00 23.14
300 0.05 0.2 0.1 10 70.00 31.08
300 0.05 0.1 0.01 40 70.00 52.95
100 0.05 0.1 0 10 66.67 7.67
100 0.1 0.1 0.01 10 66.67 7.84
100 0.05 0.2 0 10 66.67 8.11
300 0.05 0.1 0 10 66.67 21.25
100 0.1 0.03 0.1 40 66.67 28.60
300 0.1 0.05 0.1 40 66.67 57.63
300 0.1 0.03 0.01 40 66.67 58.29
300 0.05 0 0.1 10 66.67 59.76
100 0.1 0 0.1 40 66.67 354.50
100 0.05 0.2 0.01 10 63.33 8.51
100 0.1 0.1 0.1 10 63.33 8.95
100 0.1 0.03 0.1 10 63.33 10.48
300 0.1 0.03 0.01 10 63.33 21.65
300 0.05 0 0 10 63.33 35.19
300 0.1 0.03 0 40 63.33 56.21
300 0.1 0.2 0 40 63.33 65.66
100 0.1 0 0.01 40 63.33 114.02
300 0.1 0.1 0 10 60.00 21.01
100 0.1 0.2 0 40 60.00 22.45
100 0.1 0.2 0.01 40 60.00 23.62
100 0.1 0.03 0 40 60.00 25.32
100 0.1 0.05 0.01 10 56.67 8.41
300 0.1 0.05 0.1 10 56.67 19.96
300 0.1 0.03 0.1 10 56.67 20.20

300 0.1 0.05 0 10 56.67 20.27
300 0.1 0.03 0 10 56.67 20.81
300 0.1 0.1 0.01 10 56.67 21.33
300 0.1 0.1 0.1 10 56.67 23.81
100 0.1 0.03 0.01 40 56.67 26.65
300 0.1 0.03 0.1 40 56.67 58.23
100 0.1 0.03 0 10 53.33 8.17
100 0.1 0.03 0.01 10 53.33 8.41
100 0.1 0.2 0.01 10 53.33 9.63
100 0.1 0.1 0.01 40 53.33 20.78
100 0.1 0.05 0.01 40 53.33 23.08
300 0.05 0.2 0.01 10 53.33 27.06
300 0.1 0.05 0 40 53.33 53.93
300 0.1 0.2 0.1 40 53.33 73.48
300 0.1 0.05 0.01 10 50.00 19.89
100 0.1 0.1 0 40 50.00 20.30
100 0.1 0 0.1 10 50.00 20.91
100 0.1 0 0.01 10 50.00 83.32
100 0.1 0.2 0.1 10 46.67 13.64
300 0.1 0.1 0.01 40 46.67 57.12
300 0.1 0.1 0.1 40 46.67 61.50
100 0.1 0.05 0.1 10 43.33 8.39
300 0.1 0.2 0.01 40 43.33 66.04
100 0.1 0.05 0 10 40.00 7.88
300 0.1 0.05 0.01 40 40.00 55.83
100 0.1 0.2 0 10 36.67 8.93
300 0.1 0.2 0.1 10 36.67 39.24
100 0.1 0 0 40 36.67 58.27
300 0.1 0 0.1 40 36.67 5512.16
300 0.1 0.2 0.01 10 30.00 26.63
300 0.1 0.1 0 40 30.00 57.56
300 0.1 0.2 0 10 26.67 26.46
300 0.1 0 0.01 40 26.67 3420.00
300 0.1 0 0 10 23.33 62.70
100 0.1 0 0 10 20.00 16.02
300 0.1 0 0 40 20.00 200.86
300 0.1 0 0.1 10 20.00 1534.67
300 0.1 0 0.01 10 16.67 62.32

	Structure Bookmarks
	Clustering Algorithms for Transit Network Design
	1. Introduction
	2. Overview of the GA
	PRIMARY ROUTINE: Genetic Algorithm
	2.1 Generating Initial Solutions
	2.2 Tournament
	2.3 Reproduction
	2.3.1 Crossover Function
	2.3.2 Mutation Function
	2.4 Convergence
	3. Description of Experiments
	4. Discussion of Results
	4.1 Results of Algorithmic Structure Testing
	4.2 Results of Parameter Testing
	4.3 Larger Networks
	5. Conclusions
	6. References

Accessibility Report

		Filename:

		UCNR25-35-Final-Report_20200225.pdf

		Report created by:

		NTL Digital Submissions, Librarian, ntldigitalsubmissions@dot.gov

		Organization:

		National Transportation Library, Cataloging/Metadata

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 28

		Failed: 2

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

